

August 2025

Sounding Trustworthy: AI-Generated Audio Outperforms Video and Images in Political Communication

Hinda Shakeeb

Dalhousie University, hinda@dal.ca

Colin Conrad

Dalhousie University, colin.conrad@dal.ca

Follow this and additional works at: <https://aisel.aisnet.org/amcis2025>

Recommended Citation

Shakeeb, Hinda and Conrad, Colin, "Sounding Trustworthy: AI-Generated Audio Outperforms Video and Images in Political Communication" (2025). *AMCIS 2025 Proceedings*. 3.
https://aisel.aisnet.org/amcis2025/sig_aiaa/sig_aiaa/3

Sounding Trustworthy: AI-Generated Audio Outperforms Video and Images in Political Communication

Completed Research Paper

Hinda Shakeeb

Dalhousie University

hinda@dal.ca

Colin Conrad

Dalhousie University

colin.conrad@dal.ca

Abstract

Artificial Intelligence (AI) is transforming political communication through AI-generated content, including deepfake videos, synthetic voices, and digitally manipulated images. While these advancements offer new opportunities for engagement, they also raise concerns about misinformation and political trust. This study investigates the effects of AI-generated media formats on individuals' willingness to follow political recommendations and the role of media realism in shaping trust. Through an online experiment, 150 participants assessed political content in varying degrees of realism across audio, video, and image formats. Results were analyzed using a combination of linear mixed effects analysis and natural language processing, and indicate that AI-generated audio is perceived as more trustworthy than image or video content, while lower realism levels trigger skepticism. These findings contribute to discussions on political AI, emphasizing the need for media literacy and regulatory frameworks to mitigate misinformation risks.

Keywords (Required)

AI-generated content, responsible AI, political communication, deepfake videos, synthetic media, misinformation, political trust, audio, realism.

Introduction

Artificial Intelligence (AI) is increasingly shaping political communication through AI-generated content (AIGC), including deepfake videos, synthetic voices, and text-based content. These technologies influence public perception and political trust, raising concerns about misinformation, political integrity, and the ethical implications of AI's role in shaping democratic discourse. While fake news has been influential on electoral politics for some time (Lazer et al., 2018), AIGC presents a new challenge for democracies and regulators due to the ubiquity and ease of creating content. In a recent report by a team at the University of Ottawa, for instance, these challenges were highlighted for their impacts on Canada's political discourse and on electoral politics around the world (Bartleman et al., 2024). When these considerations are compounded by the rapid advances in highly realistic and consistent images and videos by algorithms such as Midjourney (Midjourney, 2024), it is pressing to find ways to responsibly develop the technology.

To respond to the challenge researchers are conducting studies on the various ways that AIGC impacts decision making and are testing designs for helping to ensure safer use behavior. Major social media platforms have taken various approaches to inform users of AIGC through tools such as watermarking (Saberi et al., 2023), which are known to impact the persuasiveness of online content (R. E. Lim & Lee, 2023; W. M. Lim, 2024). Some of these emerging studies have focused on cognitive aspects of AIGC, in its various forms, and have identified the antecedents of intentions to follow recommendations (Nissen et al., 2025). However, despite the increasing use of AIGC and increasing research on the topic, limited research has compared the effects of different media types (e.g., image, audio, video) on trust and intentions.

This paper explores how different AI-generated media formats impact political trust and individuals' willingness to follow political recommendations. Here, political recommendations refer to calls to action conveyed through political campaign media, such as encouraging voting, expressing support, or endorsing a candidate. Specifically, we address the following research questions:

RQ1: What is the impact of the AI generated media format on someone's trust and intention to follow political recommendations?

RQ2: What is the impact of the degree of media realism on the trust and intention to follow political recommendations?

By investigating these questions, this study contributes to the growing discourse on political AI and information systems, providing insights into how AI-generated content influences public perception and decision-making. Through an experimental approach, we analyze participant responses to AI-generated political posters, deepfake videos, and AI-synthesized voice recordings to assess trust, engagement, and perceived realism. Our research complements the existing literature on AIGC by providing insight into the impact of media types and lays the foundation for future research on ways that interventions can differently impact the influence of media types.

Background and Hypotheses

AIGC Misinformation in Political Campaigns

AI-generated political media encompasses a broad spectrum of synthetic content, including text, images, videos, and audio recordings. These technologies leverage deep learning models, such as Generative Adversarial Networks (GANs), to produce highly realistic political narratives (Molina & Sundar, 2024). While AI-generated content can enhance political engagement, it also introduces risks related to authenticity, trust, and manipulation.

Deepfake technology, in particular, has gained attention for its ability to create hyper-realistic videos of political figures, making it a powerful tool for misinformation campaigns (Kharvi, 2024). AI-generated speech and text-based political content have also been found to influence audience perceptions, often perceived as credible when aligned with preexisting beliefs (Huschens et al., 2023).

Recent studies highlight that cognitive biases affect the reception of AI-generated political content. Research suggests that highly realistic AI-generated media is often perceived as more credible, whereas lower realism levels may trigger skepticism (Nissen et al., 2023). Additionally, prior exposure to AI-generated misinformation can desensitize audiences, making them more susceptible to persuasion (Yang et al., 2023). However, authenticity and accountability concerns persist, as AI-generated content can be weaponized for deceptive political tactics (Araujo et al., 2023).

The use of AI in political campaigns has also transformed the landscape of electioneering. In the 2024 U.S. Presidential Election, AI-generated images and videos played a significant role in shaping public opinion. Notable examples include a fabricated endorsement by Taylor Swift and a false controversy involving Kamala Harris, both of which circulated widely and influenced voter perceptions (Elliott, 2024). Similar trends were observed in the 2024 Taiwanese and Argentine Presidential Elections, where deepfake videos and AI-generated robocalls spread political misinformation, underscoring the need for stricter regulations and ethical guidelines.

Beyond traditional media, AI-generated political posters have emerged as powerful tools for shaping public perception. For example, in 2024, former U.S. President Donald Trump posted an AI-generated image depicting himself in battle armor, symbolizing strength and resilience. Such imagery, while engaging for supporters, raises concerns about authenticity and the potential for misleading visual propaganda (Wong, 2024). In response to these challenges, policymakers and experts emphasize the need for regulations to address the creation and distribution of AI-generated political content. Discussions surrounding ethical AI

usage in electoral processes continue to gain traction, with governments considering policies to balance innovation with misinformation prevention (Hasan, 2024).

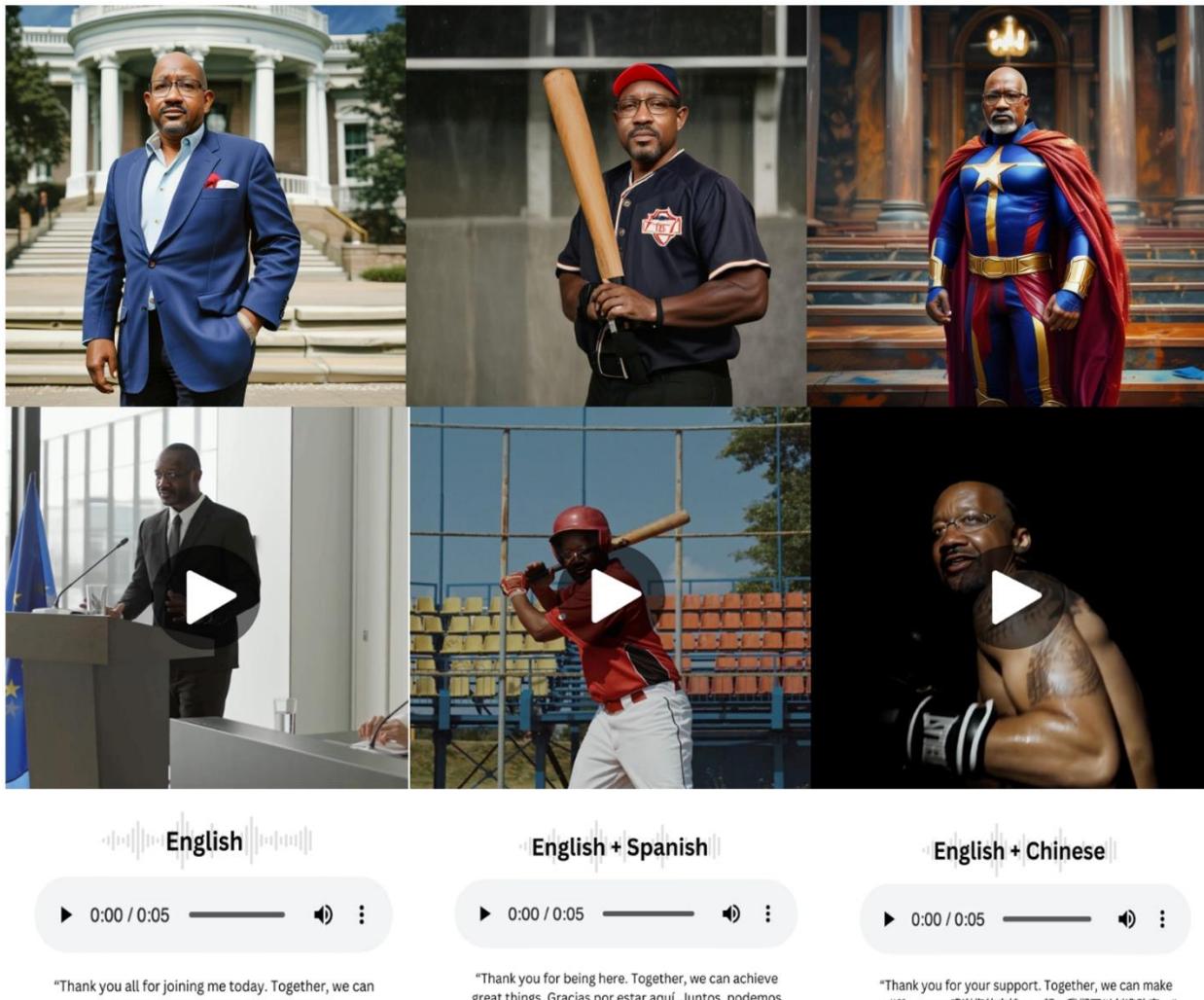
Understanding the impact of AI-generated political content is important for informing media literacy initiatives, policy regulations, and AI ethics. By understanding how different AI-generated media formats influence political trust and intention, this study provides insights to mitigate the risks associated with AI-driven misinformation.

Trust, Intentions, and Emotions

Trust is a well-studied antecedent to consumer intentions, especially in web contexts such as websites and social media (Harrison McKnight et al., 2002; Mirowska & Arsenyan, 2023). Intentions in consumer contexts, broadly construed, represent an endorsement or desire to act in some way. Often these take the form of purchase intentions (Gefen & Straub, 2004), though in much of the influential literature on consumer technologies, intentions have also concerned following advice (Harrison McKnight et al., 2002). More recent literature on artificial influencers, one of the applications of AIGC, have also explored intentions as a willingness to follow recommendations (Mirowska & Arsenyan, 2023).

However, many of these studies of trust have also revealed that there are different ways of conceptualizing the concept. As demonstrated by Gefen & Straub (2004), trust can be envisioned as both an evaluation of a specific artifact, which is influenced by global attitudes such as familiarity with the website. This evaluative variety of trust, which is also sometimes called “trustworthiness,” is further known to have many antecedents, such as emotional evaluations (Nissen et al., 2025). Emotional evaluations are especially relevant to a study of political AIGC because the communications are often emotionally charged and concern the endorsement of a specific politician in a social context. It is therefore useful to investigate not just the relationship between trust and intentions, but also the potential role of evaluations such as excitement generated by the media.

Methodology


To address our research questions, we conducted an online experiment whereby participants reported their perceptions of AI generated multimedia. These findings follow a picture presentation paradigm which is popular in psychological sciences (Lang et al., 2008), which has since been adapted for the assessment of multimedia in information systems contexts (Nissen et al., 2025).

Participants

150 participants were recruited to complete the online study through Prolific, a research participant crowdsourcing platform. Participants were required to be a Canadian over 18 years of age and be fluent in English. Canadians were selected because the research funder for the project is Canadian, and constraining the population to a single country can control for potential confounding effects. Participants were compensated £0.7 and their responses were excluded from analysis if they contained missing responses or had no variance in their responses. The research was approved by our university’s research ethics board and were determined to be consistent with the Declaration of Helsinki.

Instruments and Measures

The stimuli consisted of audio, image, or video media representing the same political actor in each stimulus. Selecting the same actor helped control potential variances in responses due to extraneous factors related to the participants’ perception of the actor. The images were generated using the Artbreeder (Elliott, n.d.), videos through Swapface software (*Swapface*, n.d.), and the audio media were created using Speechify (*Speechify*, n.d.). Although fictional, the stimuli were crafted to resemble typical political campaign materials and aimed to simulate realistic scenarios audience might encounter. Three samples representing varying degrees of realism (i.e., high, medium, low) were created for each media variety. Figure 1 depicts the approach by contrasting the three degrees of realism for the image media.

Figure 1 – Demonstration of the stimuli. Each row represents the varieties of media arranged from high realism (left) to low realism (right).

Realism was determined by the degree of plausibility for each condition; for example, it is plausible that the candidate can speak in both English and Spanish, but implausible that they speak both English and Chinese. This operationalization focused on the plausibility of the medium itself, how naturally the audio, video, or image appeared, rather than the realism of the message or the content being communicated.

Following the presentation of each media sample, participants completed single item questionnaires related to their perceptions of realism, excitement, honesty, and willingness to follow recommendations. In addition, participants completed multi-item questionnaires about their familiarity with AI. The sources and structure of the questionnaire items are summarized in Table 1.

Table 1 - Questionnaire Measures

Instrument	Administered	Source
Realism	After presentation	Novel item
Excitement	After presentation	Novel item
Trust	After presentation	(Nissen et al., 2023, 2025)
Follow Recommendations	After presentation	(Nissen et al., 2023, 2025)
Familiarity with AI	End of survey	(Gefen & Straub, 2004)

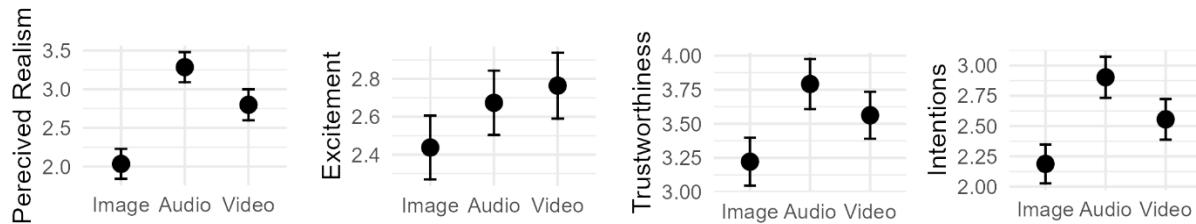
In addition to the structured questionnaire items, participants responded to the open-ended question: 'Which of the mediums (Poster, Deepfake Video, or Voice Recording) do you find acceptable for portraying this politician, and why?' This question allowed for qualitative insights into their perceptions beyond the structured measures.

Procedure and Data Processing

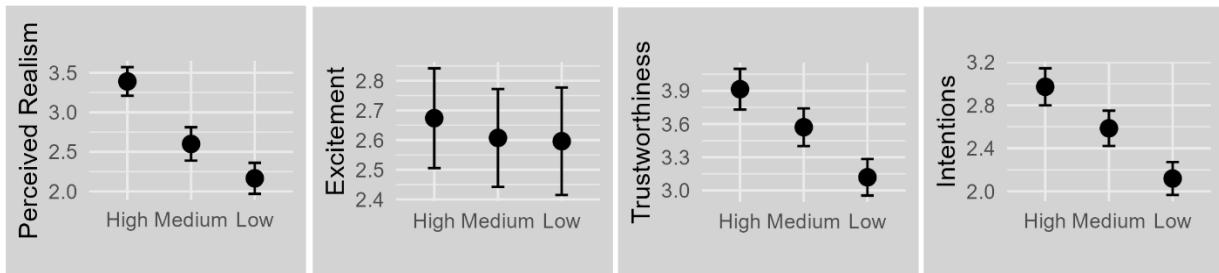
The experiment design is similar to media presentation studies reported in past information systems, human-computer interaction, and psychology literature (Conrad et al., 2022; Lang et al., 2008; Nissen et al., 2025). We embedded the videos, images, and sound files to an online interface using the Qualtrics platform. Participants invited to complete the task through the Prolific platform, and once they begun, they were randomly assigned to one condition from each of the three media types (i.e., one picture, one video, one audio). The media were presented for their full duration: videos lasted between 13 and 8 seconds, and audios lasted between 8 and 5 seconds, after which they were invited to complete their simple questionnaire. After assessing all three media types, participants completed one final questionnaire and an open-ended text question.

Data from the study was merged and cleaned using the R programming language (v. 4.1) and analyzed with confidence intervals and linear regression with a mixed effects model. We created two models of intentions to follow recommendations to assess the psychological and stimulus influences. In the first model, intentions were the dependent variable; realism, excitement, and trust were treated as fixed effects while familiarity with AI and participant ID were treated as random effects. The second model had the same structure, only the media and stimulus conditions were treated as fixed effects instead with the high realism image as the default level. To ensure data quality, we removed data from 6 participants whose response times were more than two standard deviations from the mean. Cronbach's alpha was used to assess the familiarity with AI measure and was deemed to be internally consistent with a value of 0.805.

Unstructured Open-Ended Question Analysis


In addition to structured responses, open-ended responses were analyzed using Natural Language Processing (NLP) techniques on responses. This analysis aimed to identify key themes, sentiment trends, and frequently co-occurring words within participant responses. NLP has been widely recognized for its ability to process and categorize qualitative data efficiently. Crowsten et al. (2012) highlighted NLP's capability in reducing manual coding efforts, making it a valuable tool for analyzing large datasets. Preprocessing steps included tokenization, stopword removal, lemmatization, and n-gram analysis. Topic modeling (LDA) and sentiment analysis were conducted using Python's *NLTK*, *spaCy*, and *Gensim* libraries to evaluate the overall tone of responses, categorizing them as positive, neutral, or negative.

Results


Descriptive Results of Media and Stimulus Conditions

The mean response values for each media condition are summarized in Figure 2 and the responses by stimulus realism condition are arranged in Figure 3. The most noteworthy observations were that the audio stimulus conditions ($M = 3.28$, $SE = 0.098$, $CI = [3.09, 3.48]$) were perceived as more realistic than the video conditions ($M = 2.80$, $SE = 0.101$, $CI = [2.60, 3.00]$) or the image conditions ($M = 2.03$, $SE = 0.098$, $CI = [1.84, 2.23]$). Likewise, the high stimulus realism condition ($M = 3.39$, $SE = 0.091$, $CI = [3.21, 3.57]$) was perceived as more realistic than the medium ($M = 2.6$, $SE = 0.107$, $CI = [2.39, 2.81]$) or low

realism ($M = 2.17$, $SE = 0.099$, $CI = 1.97, 2.36$) conditions. Similar trends were observed between realism, trust, and reported intentions.

Figure 2 - Mean responses and 95% confidence intervals by media conditions

Figure 3 - Mean responses and 95% confidence intervals by stimulus realism

Influences of Intentions

In the first model of recommendation intentions, we found that all three of the fixed effects were influential. Perceived Realism was observed to have a significant effect ($\beta = 0.387$, $SE = 0.031$, $t = 12.51$, $p < 0.001$) as did excitement ($\beta = 0.28$, $SE = 0.037$, $t = 8.74$, $p < 0.001$) and trust effect ($\beta = 0.09$, $SE = 0.034$, $t = 2.63$, $p = 0.008$).

In the second model, we found that some media conditions negatively impacted intentions while others positively impacted them. The audio condition was associated with an increased propensity to follow recommendations ($\beta = 0.69$, $SE = 0.087$, $t = 7.86$, $p < 0.001$) as was the video condition ($\beta = 0.36$, $SE = 0.087$, $t = 4.14$, $p < 0.001$). By contrast, the medium realism condition was associated with a lower intention to follow recommendations ($\beta = -0.31$, $SE = 0.098$, $t = -3.23$, $p = 0.001$) as was the low realism condition ($\beta = -0.79$, $SE = 0.096$, $t = -8.12$, $p < 0.001$).

Unstructured Question Results

The most frequently mentioned words in participant responses were "voice" (102 occurrences), "recording" (91 occurrences), "poster" (63 occurrences), and "video" (60 occurrences). Among the most common bigrams, "voice recording" appeared 81 times, while "deepfake video" was noted 14 times.

As for the sentiment analysis, voice recordings generally received mixed reactions, but they faced less skepticism compared to deepfake videos. Deepfake videos, on the other hand, were predominantly viewed negatively, with concerns about their potential for manipulation and deception. Posters were received more neutrally to positively, as they were considered credible, though not as engaging as other mediums. For example, one participant described the voice recording as "sounding natural and believable," while another noted that the deepfake video "felt off in a way that made it harder to trust." These reflections reinforce the NLP findings that audio was more acceptable and video more polarizing.

Topic Modeling Results LDA analysis identified three primary themes in participant responses: A) Realism in AI-Generated Content: Participants frequently emphasized the importance of authenticity, using words such as "voice," "realistic," and "acceptable." B) Skepticism Toward Deepfake Videos: Terms like "fake,"

"manipulative," and "uncanny" reflected concerns regarding the deceptive nature of deepfake videos. C) Credibility of Posters: Posters were described as "traditional" and "credible," reinforcing their role as a safe, though less dynamic, medium for political communication.

Discussion

Our findings reveal insights into how AI-generated political content impacts trust and engagement. The results indicate that audio-based AI media is perceived as more trustworthy than images or video. Our findings also replicate the well-studied impacts of trust and realism on intentions in social media influence contexts (Gefen & Straub, 2004; Nissen et al., 2025). Participants reported higher trustworthiness levels and were more likely to follow recommendations when presented with AI-generated audio rather than images or videos. NLP findings for the open-ended question further support this analysis, confirming that voice recordings are perceived as the most acceptable medium due to their realism and trust. In contrast, deepfake videos were met with skepticism, reinforcing concerns about AI-generated deception in political communication and raised ethical concerns regarding misinformation (Kharvi, 2024).

One explanation for the higher trust in AI-generated audio content relates to cognitive processing demands, which has been summarized by cognitive load theory (Leahy & Sweller, 2011). Though cognitive load finds its roots in the e-learning literature, it has also been used to explain its influence on decision making in computer use contexts (Hollender et al., 2010) and has been applied as a physiological level measure in the information systems literature (Fehrenbacher & Djamasbi, 2017). Cognitive load theory suggests that spoken information is often processed more efficiently than text or visual information, broadly (Leahy & Sweller, 2011). In the case of our findings, we can infer that audio is simply less taxing in the decision process than the other conditions. Audio allows for a more natural distribution of cognitive effort, as speech processing occurs through auditory channels, freeing up visual processing capacity and reducing the likelihood of information overload (Tabbers et al., 2004). Visual media, by contrast, often forces participants to divide their attention between multiple elements, such as facial expressions, text, and gestures, which increases cognitive burden. Audio-only formats eliminate this issue, enabling efficient processing and higher perceived authenticity (Leahy & Sweller, 2016). This explains why video and image formats, which require additional scrutiny, may have resulted in lower trust ratings.

Another possible explanation is the uncanny valley effect, as explored in prior research on virtual influencers (Nissen et al., 2023, 2025). AI-generated visuals, particularly in political contexts, may simply seem more uncanny, where they appear almost human but still exhibit subtle imperfections that trigger discomfort. AI-generated videos and images, particularly those in the medium realism condition, may have triggered an uncanny effect, reducing trust compared to audio-only stimuli. By contrast, the audio condition could seem so realistic that has surpassed the uncanny valley, and is indistinguishable from human speech.

Additionally, while Media Richness Theory classifies video as a "richer" format due to its multimodal cues, this richness may not enhance trust if the content appears artificial or emotionally off (Daft & Lengel, 1986). In such cases, social presence, or the feeling of human-like connection, may actually be stronger in simpler formats like voice, especially when the speaker sounds emotionally expressive and natural.

Regardless of explanation, realism, both perceived and actual, played a crucial role in participants' trust and engagement with AI-generated content. High-realism conditions led to increased credibility and a stronger willingness to follow recommendations. This aligns with previous literature on perceived authenticity in digital environments, where higher realism correlates with increased trust (Nissen et al., 2023). Additionally, realism in AI-generated content impacts the likelihood of misinformation acceptance; research suggests that when synthetic media closely mimics real-world stimuli, individuals are less likely to engage in critical scrutiny (Yang et al., 2023).

These results highlight the urgency of media literacy interventions and regulatory efforts to ensure transparency in AI-generated political media. Deepfakes, while not always deceptive, often induce uncertainty that diminishes trust in media (Vaccari & Chadwick, 2020). Proposals such as watermarking, content disclaimers, and platform labeling warrant further exploration.

Take together, the findings emphasize the importance of thoughtful design in AI-generated multimedia. Given the strong preference for audio, designers and political communicators may lean toward using AI-

generated speech over AI-generated avatars or deepfake visuals. This aligns with broader industry trends emphasizing AI-powered chat interactions rather than hyper-realistic avatars.

Limitations and future work

Despite its contributions, this study has several limitations that warrant further exploration. While single-item measures are efficient for exploratory research, they may not fully capture the complexity of participants' perceptions. Single-item measures were selected to avoid participant fatigue and to complement past research such as Nissen et al. (2023, 2025). Future research should employ multi-item scales for variables such as realism, trust, and recommendation-following behavior to enhance measurement reliability.

Our study combined both within-subject and between-subject experimental designs. Although we used linear mixed-effects models (LME) to control participant-level effects, residual individual differences may still have influenced our results. Future studies should employ a between-subject design or use an alternative causal model to more rigorously control for the effects. Additionally, this study was conducted online, where participants evaluated AI-generated political media in a controlled setting. However, real-world political engagement involves additional contextual factors such as social influence, media framing, and political ideology. Future research should examine how AI-generated political media affects behavior in naturalistic settings, such as during live political debates, campaign advertisements, or social media interactions.

Another limitation is that our study focused on only 150 Canadian participants, which limits generalizability to all political and cultural contexts. Given the varying media literacy levels, regulatory landscapes, and political climates across countries, future research should replicate this study across diverse cultural and political environments to assess the universality of our findings (Molina & Sundar, 2024).

Finally, this study relied on self-reported perceptions within a controlled experimental setting, which may not fully capture how individuals engage with AI-generated political content in real-world contexts. While the findings highlight potential influence, audiences are not passive; their responses are shaped by prior beliefs, media literacy, and political context. By addressing these limitations, future research can further our understanding of how AI-generated media shapes political communication, public trust, and decision-making in an increasingly AI-driven information ecosystem.

Conclusion

This study highlights how AI-generated media influences political trust and intention, with AI-generated audio emerging as the most trusted and willing to follow format compared to video and images. The cognitive simplicity of audio, free from skepticism-inducing visual cues, likely contributes to its credibility, supporting the idea that realism levels impact media trust. The findings reinforce the "uncanny valley" effect, where lower realism in AI-generated visuals increases scrutiny and doubt, affecting public perception and willingness to follow political recommendations. These insights emphasize the necessity of understanding how different AI-generated media formats influence political discourse and decision-making.

Future research should further examine the psychological mechanisms behind trust in AI-generated media, exploring how demographic factors and prior media exposure shape audience perceptions. Additionally, longitudinal studies could assess whether increased exposure to AI-generated media normalizes trust or heightens skepticism over time. As AI technologies advance, interdisciplinary research integrating political science, cognitive psychology, and media studies will be crucial to understanding and mitigating the potential risks of synthetic political communication while leveraging its benefits responsibly.

REFERENCES

Araujo, T., Brosius, A., Goldberg, A. C., Möller, J., & Vreese, C. de. (2023). Humans vs. AI: The Role of Trust, Political Attitudes, and Individual Characteristics on Perceptions About Automated Decision Making Across Europe. *International Journal of Communication*, 17(0), Article 0.

Artbreeder. (n.d.). Retrieved February 13, 2025, from <https://artbreeder.com>

Bartleman, M., Dubois, E., Bradshaw, S., Chun, W. H. K., Dunn, S., McKelvey, F., & Wong, W. H. (2024). *The Political uses of AI in Canada*.

Conrad, C. D., Aziz, J. R., Henneberry, J. M., & Newman, A. J. (2022). Do emotions influence safe browsing? Toward an electroencephalography marker of affective responses to cybersecurity notifications. *Frontiers in Neuroscience*, 16, 922960. <https://doi.org/10.3389/fnins.2022.922960>

Crowston, K., Allen, E. E., & Heckman, R. (2012). Using natural language processing technology for qualitative data analysis. *International Journal of Social Research Methodology*, 15(6), 523–543. <https://doi.org/10.1080/13645579.2011.625764>

Daft, R. L., & Lengel, R. H. (1986). Organizational Information Requirements, Media Richness and Structural Design. *Management Science*, 32(5), 554–571.

Elliott, V. (2024). The Year of the AI Election Wasn't Quite What Everyone Expected. *Wired*. <https://www.wired.com/story/the-year-of-the-ai-election-wasnt-quite-what-everyone-expected/>

Fehrenbacher, D. D., & Djamasbi, S. (2017). Information systems and task demand: An exploratory pupillometry study of computerized decision making. *Decision Support Systems*, 97, 1–11. <https://doi.org/10.1016/j.dss.2017.02.007>

Gefen, D., & Straub, D. W. (2004). Consumer trust in B2C e-Commerce and the importance of social presence: Experiments in e-Products and e-Services. *Omega*, 32(6), 407–424. <https://doi.org/10.1016/j.omega.2004.01.006>

Harrison McKnight, D., Choudhury, V., & Kacmar, C. (2002). The impact of initial consumer trust on intentions to transact with a web site: A trust building model. *The Journal of Strategic Information Systems*, 11(3), 297–323. [https://doi.org/10.1016/S0963-8687\(02\)00020-3](https://doi.org/10.1016/S0963-8687(02)00020-3)

Hasan, S. (2024). *The Effect of AI on Elections Around the World and What to Do About It* | Brennan Center for Justice. <https://www.brennancenter.org/our-work/analysis-opinion/effect-ai-elections-around-world-and-what-do-about-it>

Hollender, N., Hofmann, C., Deneke, M., & Schmitz, B. (2010). Integrating cognitive load theory and concepts of human–computer interaction. *Computers in Human Behavior*, 26(6), 1278–1288. <https://doi.org/10.1016/j.chb.2010.05.031>

Huschens, M., Briesch, M., Sobania, D., & Rothlauf, F. (2023). *Do You Trust ChatGPT? -- Perceived Credibility of Human and AI-Generated Content* (arXiv:2309.02524). arXiv. <https://doi.org/10.48550/arXiv.2309.02524>

Kharvi, P. L. (2024). Understanding the Impact of AI-Generated Deepfakes on Public Opinion, Political Discourse, and Personal Security in Social Media. *IEEE Security & Privacy*, 22(4), 115–122. IEEE Security & Privacy. <https://doi.org/10.1109/MSEC.2024.3405963>

Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (2008). *International Affective Picture System (IAPS): Affective ratings of pictures and instruction manual*. University of Florida, Gainesville FL.

Lazer, D. M. J., Baum, M. A., Benkler, Y., Berinsky, A. J., Greenhill, K. M., Menczer, F., Metzger, M. J., Nyhan, B., Pennycook, G., Rothschild, D., Schudson, M., Sloman, S. A., Sunstein, C. R., Thorson, E. A., Watts, D. J., & Zittrain, J. L. (2018). The science of fake news. *Science*, 359(6380), 1094–1096. <https://doi.org/10.1126/science.aaa2998>

Leahy, W., & Sweller, J. (2011). Cognitive load theory, modality of presentation and the transient information effect. *Applied Cognitive Psychology*, 25(6), 943–951. <https://doi.org/10.1002/acp.1787>

Leahy, W., & Sweller, J. (2016). Cognitive load theory and the effects of transient information on the modality effect. *Instructional Science*, 44(1), 107–123. <https://doi.org/10.1007/s11251-015-9362-9>

Lim, R. E., & Lee, S. Y. (2023). “You are a virtual influencer!”: Understanding the impact of origin disclosure and emotional narratives on parasocial relationships and virtual influencer credibility. *Computers in Human Behavior*, 148, 107897. <https://doi.org/10.1016/j.chb.2023.107897>

Lim, W. M. (2024). Fact or fake? The search for truth in an infodemic of disinformation, misinformation, and malinformation with deepfake and fake news. *Journal of Strategic Marketing*, 0(0), 1–37. <https://doi.org/10.1080/0965254X.2023.2253805>

Midjourney. (2024). *Character Reference—Consistent Characters in Midjourney*. <https://docs.midjourney.com/docs/character-reference>

Mirowska, A., & Arsenyan, J. (2023). Sweet escape: The role of empathy in social media engagement with human versus virtual influencers. *International Journal of Human-Computer Studies*, 174, 103008. <https://doi.org/10.1016/j.ijhcs.2023.103008>

Molina, M. D., & Sundar, S. S. (2024). Does distrust in humans predict greater trust in AI? Role of individual differences in user responses to content moderation. *New Media & Society*, 26(6), 3638–3656. <https://doi.org/10.1177/14614448221103534>

Nissen, A., Conrad, C., & Newman, A. (2023). Are You Human? Investigating the Perceptions and Evaluations of Virtual Versus Human Instagram Influencers. *Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems*, 1–14. <https://doi.org/10.1145/3544548.3580943>

Nissen, A., Conrad, C., Seeber, I., & Newman, A. (2025). Why Do We Follow Virtual Influencer Recommendations? Three Theoretical Explanations from Brain Data Tested with Self-Reports. *JAIS Preprints (Forthcoming)*. <https://doi.org/10.17705/1jais.00930>

Saberi, M., Sadasivan, V. S., Rezaei, K., Kumar, A., Chegini, A., Wang, W., & Feizi, S. (2023, October 13). *Robustness of AI-Image Detectors: Fundamental Limits and Practical Attacks*. The Twelfth International Conference on Learning Representations. <https://openreview.net/forum?id=dLoAdIKENc>

Speechify: Free Text to Speech Reader | 250,000+ 5-star Reviews. (n.d.). Speechify. Retrieved February 13, 2025, from <https://speechify.com/>

Swapface. (n.d.). Retrieved March 13, 2025, from <https://www.swapface.org/>

Tabbers, H. K., Martens, R. L., & Merrienboer, J. J. G. van. (2004). Multimedia instructions and cognitive load theory: Effects of modality and cueing. *British Journal of Educational Psychology*, 74, 71–82. <https://doi.org/10.1348/000709904322848824>

Vaccari, C., & Chadwick, A. (2020). Deepfakes and Disinformation: Exploring the Impact of Synthetic Political Video on Deception, Uncertainty, and Trust in News. *Social Media + Society*, 6(1), 2056305120903408. <https://doi.org/10.1177/2056305120903408>

Wong, M. (2024). *AI's Fingerprints Were All Over the Election—The Atlantic*. https://www.theatlantic.com/technology/archive/2024/11/ai-election-propaganda/680677/?utm_source=chatgpt.com

Yang, S., Krause, N. M., Bao, L., Calice, M. N., Newman, T. P., Scheufele, D. A., Xenos, M. A., & Brossard, D. (2023). In AI We Trust: The Interplay of Media Use, Political Ideology, and Trust in Shaping Emerging AI Attitudes. *Journalism & Mass Communication Quarterly*, 10776990231190868. <https://doi.org/10.1177/10776990231190868>