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Privacy Calculus and Disclosure in Generative AI

How Privacy Calculus Drives Fatigue-
Induced Disclosure in Generative Al
Emergent Research Forum (ERF) Paper
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Dalhousie University Dalhousie University
shirin.fereidoonian@dal.ca colin.conrad @dal.ca
Abstract

As generative artificial intelligence (GAI) becomes increasingly prevalent, concerns regarding information
disclosure have garnered considerable attention. In this research-in-progress paper, expand on existing
theories of privacy disclosure by introducing eye tracking measures and an experiment which will
investigate the effectiveness of an informational privacy nudging technique. We hypothesize that privacy
nudges will moderate the relationship between privacy calculus and varieties of privacy fatigue. We
introduce an expanded conceptual model and describe an eye tracking experiment that can validate it. This
research will also offer insights into whether past models of privacy disclosure generalize in the new context
of effective and safer GAI design.
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Introduction

Over the past two years, generative artificial intelligence (GAI) platforms, such as ChatGPT, have exploded
in popularity due to their ability to generate novel content with simple prompted requests (Feuerriegel et
al., 2023). While these technologies are quickly changing how we learn and work, they have recently come
under increasing scrutiny from the perspective of information privacy disclosure. Regulators and scholars
have raised concerns about how large language models have utilized large data repositories in their
development, which could allow users to prompt these systems to re-identify previously de-identified data
(Gumusel, 2025). Furthermore, unlike past technologies, GAI systems can dynamically change their
requests to a user leading them to inadvertently disclose sensitive information (Feuerriegel et al., 2023).

Concerns about online privacy disclosure are not new (Furnell & Thomson, 2009). In existing systems such
as mobile applications, users face the challenging task of navigating the trade-off between reaping the
benefits of virtual activities and safeguarding their privacy, which is a mental process, as previous research
called “privacy calculus” (Sun et al., 2015; Zhu et al., 2021). However, this delicate balance becomes even
more complex in the context of privacy fatigue in GAI. When people are overwhelmed with continuous
exposure to prompts related to sharing personal information, their decision-making abilities regarding
privacy may become tedious (van der Schyff et al., 2023; Zhu et al., 2021).

Increasingly, companies that build GAI systems have considered such cognitive processes and have
implemented persuasive designs. For example, Meta has taken steps to label Al-generated multimedia on
its platforms (Bickert, 2024). This approach is one of the applications of a broader movement often referred
to as “digital nudging,” through which a user is guided to positive behavior in choice environments by
changing the interface design in a non-coercive way (Kroll & Stieglitz, 2021). However, there are reasons to
believe that changes to an interface design actually increase information disclosure, rather than decrease it,
due to the nudge design's increased fatigue effects. These effects, sometimes referred to as “privacy fatigue”
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are the varieties of exhaustion that individuals face when confronted with repeated privacy requests, which
may be either cognitive or attitudinal in nature (Choi et al., 2018; Tian et al., 2022).

In this paper, we propose a study investigating the role of varieties of privacy fatigue, whether attitudinal
or physical, and the moderating role of privacy nudging. This model will be used to investigate disclosure
using a GAI platform modeled on Open AlI's ChatGPT. Our study makes two main contributions. First, we
use eye tracking as a physical measure of cognitive privacy fatigue. Cognitive varieties of fatigue or mental
workload are often unreliably assessed by users, and capturing hidden mental processes is one of the central
contributions of neurophysiological approaches to information systems (or “NeuroIS”) research (Riedl &
Léger, 2016). Second, we extend the prior research on this topic which has been overwhelmingly focused
on mobile applications (Tian et al., 2022; Zhu et al., 2021), though now also increasingly in the domain of
GAI (Chung & Kwon, 2025) to the use of the privacy nudging technique. This short paper will describe our
conceptual model and an experiment for testing it.

Literature Review and Hypothesis Development

GAL is poised to become one of the most disruptive technological trends of our era, and there is pressing
demand by public authorities to investigate ways that people can use it safely (Gumusel, 2025). In GAI use
environments, like many other IT use environments, people constantly need to make decisions about
sharing personal information. There are many approaches to studying privacy decision behavior; however,
the privacy calculus remains one of the prominent approaches in that literature (Heravi et al., 2017). This
concept can be summarized succinctly as a struggle between privacy risks and benefits (Zhu et al., 2021).

Researchers have hypothesized that cybersecurity fatigue, which is a fatigue created by overexposure to
cybersecurity-related phenomena, plays a mediating role between the privacy calculus and disclosure
behavior (Fereidoonian & Wingreen, 2024), and has been identified as relevant to disclosure when using
GAI (Chung & Kwon, 2025). Reeves et al. (2021) conducted a literature review and determined that privacy
fatigue has two types, cognitive and attitudinal, which are distinguished by different underlying processes.
Attitudinal fatigue was described by Reeves et al. (2021) to refer to a negative disposition towards cyber
security, which in other research associated with antecedents like emotional exhaustion (Sheng et al., 2023)
and cynicism (Choi et al., 2018). Cognitive fatigue, by contrast, refers to the internal state of an employee
or user. This is reflected by physical states such as cognitive overload, which is the experience of being
overloaded by information (D’Arcy et al., 2014) or impulsivity which is the inhibition of long-term oriented,
executive processes (Ostendorf et al., 2022).

One challenge with measuring cognitive states, such as cognitive overload or impulsivity, is that states can
fluctuate during an experience, resulting in an unreliable personal assessment by users (Chen & Epps,
2014). This motivates us to propose a NeurolS approach to our research, which can help objectively
measure phenomena when questionnaires may not be appropriate (Riedl & Léger, 2016). Specifically, eye
tracking techniques have been used to measure similar cybersecurity phenomena (Vance et al., 2018) and
there are measures which directly relate to the elements of cognitive fatigue. Eye saccade velocity can reflect
a user's general attentional fatigue and, in turn, cognitive overload (Bafna & Hansen, 2021; Zagermann et
al., 2016). Additionally, pupil dilation has been associated with emotional states related to impulsivity
(Ried] & Léger, 2016, p. 201; Zagermann et al., 2016). By studying these physiological measures, we can
increase the reliability and explainability of existing information disclosure models.

A second contribution can be made by studying newer trends in persuasive design, such as digital nudging
(Kroll & Stieglitz, 2021). There are growing concerns about the propensity of GAI systems to encourage user
information disclosure (Gumusel, 2025), and one possible technique for encouraging safer behavior is to
provide an informational nudge, such as a safety reminder (what we will call a “privacy nudge”). Privacy
nudges may increase users' attention and awareness of disclosing their information, which is an approach
that has been attempted by leading companies such as Meta (Acquisti et al., 2017; Bickert, 2024). By
incorporating a privacy nudge in an interface design, designers can help reduce deliberative behavior and
help the privacy calculus process to reduce different types of privacy fatigue. Given these considerations,
we propose a conceptual model and hypotheses, which are illustrated by Figure 1. This model expands on
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the model originally introduced by Fereidoonian and Wingreen (2024) by introducing a refined articulation
of privacy calculus as well as the privacy nudge and its effects on specific varieties of fatigue.

| Cybersecurity fatigue Types
I Cognitive Fatigue

|
Perceived
Benefits Cognitive Overload

Attitudinal Fatigue

Privacy
Calculus

Information
Disclosure

Perceived
Risks

Privacy nudge

Emotional
Exhaustion

Figure 1. Proposed Conceptual Model

We hypothesize that:
Ha1 — Privacy calculus will positively impact cognitive fatigue.
Hz2 — Privacy calculus will positively impact attitudinal fatigue.

Hga — Privacy nudges weaken (negatively moderate) the relationship between net privacy calculus and
cognitive fatigue.

H3b - Privacy nudges weaken (negatively moderate) the relationship between net privacy calculus and
attitudinal fatigue.

H4 — Cognitive fatigue will positively impact information disclosure behavior.
H5 — Attitudinal fatigue will positively impact information disclosure behavior.

Our reasoning is that if a negative privacy calculus (i.e., the user perceives that risks outweigh benefits)
typically leads to higher cybersecurity fatigue, information nudges may help users manage privacy
concerns, reducing their feelings of being overwhelmed. For individuals with a positive net privacy calculus
(i.e., benefits outweigh risks), nudges may reinforce their confidence, further reducing fatigue.

Experiment Design

Seventy-four participants will be recruited from the university. The number of participants was determined
using G Power's Linear multiple regression test with a medium Effect size f2 measure of 0.15 and power (1
— B) of 0.95 (Faul et al., 2007). Participants will be awarded either partial course credit or financial
compensation of CAD 10 for participating in the study.

After consenting, on day one, we will give students some questionnaires to fill out to test our conceptual
model and make sure about the constructs and their relations. On day two, they will be brought to an
observational room equipped with a computer and an eye tracker. The interface will follow a similar design
to ChatGPT and be developed using the GPT-4 chat API. Participants will conduct three tasks with a virtual
agent using the within-subject method, which is most appropriate for designs using eye tracking (Unsworth
& Robison, 2015). The tasks are described as follows: an information-seeking task with no privacy nudge,
an information-seeking task with a privacy nudge, and a control task that does not involve information-
seeking. The order of these tasks will be randomized using a Latin Square Design to prevent order effects
such as learning, habituation, and so forth.
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For the information-seeking tasks, participants will be asked to use the assistant for advice on how to start
a company with a given structure (e.g., "corporation,” "partnership,"” "cooperative") at random. The agent
will be pre-programmed with documents from our local jurisdiction with instructions on how to advise
participants, as well as instructions to prompt users to provide some personal information about their name
and academic background. For the control task, participants will be instructed to use the machine to
generate name and location ideas for their business, and they will not be prompted to disclose personal
information. In the nudging condition, participants will be reminded not to disclose personal information
with a visual cue on the screen. Following each task, users will complete a questionnaire.

The measures used in this study consist of a combination of eye-tracking data and questionnaires. In
addition to demographic data like (reported gender, age, educational level, and experience with GAI), we
will offer 7-point Likert scales for emotional exhaustion, net privacy calculus, and cynicism (Tian et al.,
2022; Zhu et al., 2021). Privacy nudges will be measured as a binary yes/no based on whether they were
present during the experiment. Pupil dilation will be used to measure impulsivity and saccade velocity will
be used to measure cognitive overload (Bafna & Hansen, 2021; Riedl & Léger, 2016) and will be measured
using the Tobii Pro Fusion 250 Hz system with a multi-point calibration procedure before the start of each
task. Hypotheses will be tested using linear mixed-effects models, as demonstrated by Vance et al. (2018),
which are most appropriate for within-subject physiological designs.

Conclusion

If successful, this research will expand on current theories on privacy disclosure by offering physiological
insights into cognitive fatigue and an assessment of the effectiveness of privacy nudges on ensuring Al
disclosure safety. The study may pave the way for future responsible Al research on privacy fatigue, as and
potentially the development of new regulations or policies for GAIL
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