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Abstract. In brain-computer interface (BCI) research, electroencephalograms 

(EEGs) such as the Unicorn Hybrid Black (UHB) have entered the market as 

low-cost alternatives to other EEG devices. This study has two aims: the first is 

to assess the suitability of the UHB for BCI research, and the second is to assess 

the feasibility of a meditation BCI designed to provide users with feedback 

about mind wandering episodes. A BCI was created using the UHB and corre-

sponding Python API to assess various machine learning algorithms’ classifica-

tion accuracy of a meditation paradigm that uses self-caught experience sam-

pling to capture mind wandering. Key findings suggest that while the UHB is 

sufficient to capture relevant brain signals associated with mind wandering, 

though more research is required on appropriate intervention techniques.  
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1 Introduction 

Electroencephalography (EEG)-based brain-computer interfaces (BCIs) are infor-

mation technologies that use brain signals to enable a user to control an interface 

using their brain alone. Though there has been significant progress towards integrat-

ing BCIs into everyday life, the utility and usability of such systems remain an ongo-

ing exploration. Since one of the goals of a BCI is to provide a method to access and 

interact with information, BCIs can be understood as an information technology arti-

fact and thus a subject of study in Information Systems (IS).  

One of the most disruptive developments in the field of BCI is the recent prolifera-

tion of lower-cost devices such as the OpenBCI device or Unicorn Hybrid Black 

(UHB; g.tec medical engineering GmbH, Austria). These developments are an order 

of magnitude less expensive than many other common BCI systems which promise to 

make the technology accessible to researchers and consumers on a limited budget. As 

such, it is valuable to evaluate not only the feasibility and efficacy of such lower cost 

systems but also new research applications. In this paper, we describe a pilot study to 

evaluate the suitability of the UHB for IS research related to the real-time detection of 

mind wandering and associated BCIs. We developed a simple experiment based on a 
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meditation paradigm and sought to extend this to validate the design of a mind wan-

dering feedback system.  

Mind wandering was selected as a paradigm of interest due to past discussions in 

the IS and human-computer interaction communities. Mind wandering is defined as 

the disengagement from active attention due to spontaneous thought. It is character-

ized by the absence of strong constraints on both the contents of and transitions be-

tween mental states and is often defined by its absence of explicit intent [1, 2, 3, 4]. 

Though there are two primary types of mind wandering—intentional and unintention-

al—the present study will focus on the latter concept and hereafter be referred to 

plainly as mind wandering. 

Insofar as neurological markers of mind wandering, research has shown mixed re-

sults. Some claim that increased alpha band activity is the strongest indicator of mind 

wandering [2, 5], whereas conversely, others posit that only theta band activity shows 

consistently increased power [6]. A meta-analysis on spectral band activity during 

mind wandering reports that only eight of 13 studies reported increased theta activity 

[7]. Less importance has been placed on delta, beta, and gamma bands but research 

shows mixed results [7]. In sum, there is little agreement within past literature on the 

oscillatory activity associated with mind wandering, though alpha and theta bands 

seem to be most implicated. 

It can be difficult to measure mind wandering without disrupting the user. One ap-

proach, known as probe-caught sampling, measures mind wandering using a probe 

that prompts participants intermittently to collect information on whether they are 

experiencing mind wandering. While this has been shown to effectively capture mind 

wandering, it comes at the cost of disrupting the cognitive processes of the partici-

pants [8]. Another approach to measuring mind wandering is with self-caught experi-

ence sampling in which participants self-report whether they are experiencing mind 

wandering using a button press, for example [9]. Since this is not as disruptive as a 

probe, it would be a preferable method in a BCI designed with the purpose of improv-

ing attention. Thus, determining whether self-caught experience sampling is a suffi-

cient measure of mind wandering could assist in creating more accurate BCIs in the 

future. 

We selected a meditation task in part because meditation by nature involves the 

dynamic fluctuation between attention and mind wandering, but also because it is 

more likely to have minimal muscular artifacts and can be measured using few elec-

trodes [10] which are both possible confounds with the UHB system. Mind wandering 

is also a useful phenomenon to investigate because it is known to negatively impact 

the performance of learning and sustained attention tasks [11, 12, 13], so a system that 

can detect and correct mind wandering may prove to be a helpful device for the de-

sign of new information systems. We were further motivated by past approaches by 

Demazure et al. [14] which applied classifiers created with a controlled paradigm 

which were then later applied to solve a general cognitive load information technolo-

gy use problem. Before pursuing the development of a new technology artifact, it is 

essential to validate the design and feasibility of the tool. The purpose of the present 

study is thus to investigate the following questions: 

1. Can the UHB be used to detect brain signals associated with mind wandering? 
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2. Is it feasible to create a meditation-based mind wandering BCI using the UHB?  

2 Methods 

2.1 Participants and Study Procedure 

The experimental task consisted of two phases: a self-caught phase and a task disrup-

tion phase. The self-caught phase was designed to simulate the training phase of a 

BCI where user feedback is recorded to train the machine learning algorithm that 

drives the interface. The task-disruption phase was designed to simulate an interrup-

tion which could be used by a BCI to return participants to a state of task awareness. 

The procedure was approved by the Dalhousie University Research Ethics Board and 

participants (n = 5) were recruited to participate in the pilot study. The study was 

inspired by a well-cited investigation into the EEG biomarkers of mind wandering 

during meditation [14] and followed many of the methods described in that paper, 

though with some notable differences.  

In the self-caught phase, participants were fitted with the UHB and then asked to 

meditate for 20 minutes while repeatedly counting backwards from 10. A 30-second 

repeated soundtrack of birdsong was also played from the computer. Mind wandering 

was measured using self-caught experience sampling using a button press. Partici-

pants would press a button when they noticed losing count during the counting task. 

EEG markers from 10 seconds before and after a button press were compared.  

In the task-disruption phase, participants were again asked to meditate for 20 

minutes but to not press a button when they detected their mind wandering. Instead, 

the experimental paradigm was programmed to interrupt the birdsong audio to play 

traffic noises, a disruptive sound, at the 7-, 12-, and 17-minute marks for a duration of 

20, 30, and 10 seconds, respectively. EEG markers from 10 seconds before and after 

the disruptive auditory onset were compared.  

2.2 Data Processing and Analysis 

 

The UHB was used as the primary neural measurement device. It is an eight-channel 

EEG with electrodes situated at the international 10-20 system electrode positions Fz, 

C3, Cz, C4, Pz, P7, Oz, and P8 [15]. It is sampled with 24 bits and 250 Hz per chan-

nel.  

The raw EEG data were processed by applying a bandpass filter, sectioning the da-

ta into 10 second epochs, then subjected to rejection criteria. Power spectral density 

was calculated for each epoch using the multitaper method with the Python MNE 

library. Using scikit-learn, common machine learning classifiers were prepared for 

each individual and assessed using 5-fold cross-validation. In total, seven classifiers 

were investigated, as follows: linear discriminant analysis (LDA), ridge classifier, k-

nearest neighbours, support vector machine (SVM), decision tree, multi-layer percep-

tron, and Naïve Bayes. These classifiers were trained using the processed data col-
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lected from the self-caught phase and then were applied to the data collected during 

the task disruption stage of the task. An accuracy score and a mean k-fold cross-

validation score (k = 5) were computed for each classifier. Evoked objects were then 

created for each condition. 

3 Results 

During the self-caught phase, a total of 105 mind wandering button press events were 

captured with an average of 21 events per participant (min = 10; max = 50). During 

this phase, most power spectral variation was observed in the theta and alpha bands. 

Though there was considerable individual variation, the grand average of the partici-

pants reveals a pattern of elevated general theta when on task (Fig. 1).  

 

Average PSD across all electrodes before button press (mind wandering) 

 
Average PSD across all electrodes after button press (on task) 

 
Fig. 1. The average topographic power spectral densities of the mind wandering condition and 

the on-task condition during the self-caught phase. Data at the theta and alpha bands appear to 

be elevated at the theta and  

 

On average, the overall classification accuracy for the data generated in the self-

caught phase was 52%. In Table 1, we report three select classifiers which are often 

reported in BCI literature. The ridge classifier consistently performed better than 

other methods at this classification task which suggests that this method may be capa-

ble of reliably detecting the mind-wandering state in this context. However, it should 

be qualified that, given the limited number of trials, it is still possible that this was 
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due to random chance. Results of the application of the classifiers to the data generat-

ed during the task-disruption phase did not reveal any classifier which performed with 

greater than 50% accuracy at that task. 

 
Table 1. Selected classifier accuracy and results from each participant’s self-caught data. 

Classifier  P1 P2 P3 P4 P5 Median 

LDA  56% 42% 51% 55% 74% 56% 

Ridge Classifier 69% 73% 43% 58% 68% 68% 

SVM 49% 47% 51% 53% 68% 51% 

4 Discussion 

These results suggest that it may be possible to detect EEG signals related to mind 

wandering using the UHB, but that there are major challenges in applying those sig-

nals to the development of a useful BCI. The data from the self-caught phase suggests 

that mind wandering was found to be primarily associated with differentiations in 

theta activity at frontocentral areas. Our observed theta observations during the self-

caught phase are consistent with past research which posits that theta activity in fron-

tocentral areas are markers of mind wandering [16], [7, 8], though there is not enough 

data to infer whether these results replicate past studies. Importantly, our findings 

found that theta may have been elevated following button presses, which could be 

inconsistent with some findings in the mind wandering literature. Further investiga-

tions would need to be conducted to determine whether this was indeed a reliable 

measure of mind wandering or a more general reflection of a different cognitive state, 

such as task load.  

Past literature purports that alpha band activity is often reported to be attenuated 

during mind wandering and not on-task states, particularly across posterior, fronto-

central, and temporal sites [16], [7],  [9]. However, we have not observed any alpha 

power differentiations caused by mind wandering during the self-caught task phase. 

Furthermore, our task disruption phase data did not show any theta power effects 

which suggests that mind wandering was perhaps not occurring during the task dis-

ruption. Since our BCI administered these disruptions at random time intervals rather 

than when the interface detected mind wandering, it follows that mind wandering was 

not guaranteed to occur. Overall, these results suggest that the UHB can successfully 

detect mind wandering during a self-caught sampling meditation task, though care 

must be taken to control possible confounds.  

While some classifiers performed well at detecting mind wandering using the self-

caught data, all the classifiers performed very poorly at differentiating brain activity 

related to auditory disruption. We expected that the classifiers would have reliably 

detected instances following the onset of the stimulus as “on task”, similar to the 

episodes following a self-caught probe. This suggests an issue with the assumption of 

our interface design. The tasks for our two phases were fundamentally different; the 

training phase relied on self-caught experience sampling whereas the application 
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phase made use of a disparate audio stimulus intended to return participants to atten-

tion. We chose self-caught over probe-caught experience sampling because the latter 

comes at the cost of disrupting the cognitive processes of the participants [8]. Howev-

er, self-caught experience sampling relies on meta-awareness, defined as the explicit 

awareness of the contents of consciousness [18, 19, 20]. This is a different context 

than the prior example demonstrated by Demazure et al. [14], where working memory 

activation was fundamentally similar between their training paradigm and the applica-

tion context. 

A possible future direction for this work may be found in the distinction between 

varieties of mind wandering, which has recently been discussed in the context of 

information technology use [21]. Past research has distinguished between two differ-

ent states of unintentional mind wandering characterized by the presence or absence 

of meta-awareness; “tune-outs” are mind wandering with meta-awareness, and “zone 

outs” are mind wandering without [19, 20]. Using these definitions, we can character-

ize the present study’s self-caught phase as capturing “zone outs” whereas the task-

disruption phase captures “tune outs”, or perhaps even general task disengagement or 

re-engagement. This could explain why the classifiers did not perform as effectively 

on the application data as they did on the training data—the tasks may be reflective of 

different mental processes.  

There is little consensus in the literature on what is the best-performing classifier in 

an EEG-based BCI. One study found that a ridge classifier has superior accuracy after 

cross-validation in an EGG-based passive BCI [22], whereas others report that an 

LDA is the most accurate [23]. Though our results suggest that a ridge classifier is the 

best algorithm to use for our specific paradigm, our limited sample size does not al-

low us to make definitive conclusions.  

Finally, discussions can be raised about the viability of the task for BCI. Like past 

studies which used the self-caught method to measure the presence of mind wander-

ing, there was considerable variability in user responses to mind wandering episodes 

[16, 24]. Even with the counting task as a concrete measure of task loss, it is possible 

that users were not able to reliably detect mind wandering episodes or had a consider-

able variance in their subjective experience which led to a report. Alternative probe 

approaches might be able to more reliably identify mind wandering or an entirely 

task-based approach like Demazure et al. [14] could help further refine the detectable 

variance in mindfulness during meditation. 

As a pilot project, the present study has a very limited scope. A major limitation of 

this study is the small sample size. Because of this, all results and conclusions drawn 

in this study are purely speculative in nature and must be further investigated before 

being reported as true findings. The overarching aim of this paper is twofold; to eval-

uate one possible approach to designing a mind wandering BCI and to validate the 

UHB’s potential as a mind-wandering measurement device. The results of this study 

are thus intended to guide the design of future work that will aim to compare the UHB 

and a research-grade EEG with a denser electrode array in terms of their performance, 

usability, and feasibility in a mind wandering BCI. As such, one should view the 

results of this study through an exploratory lens.  
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5 Conclusion 

Our results suggest that the UHB can be used to detect mind-wandering or related 

states during a meditation task, though future research should examine effects either 

resulting from differences in varieties of mind wandering. Similarly, we can cautious-

ly claim that self-caught experience sampling is a promising approach to use in a 

mind wandering BCI, though perhaps not in conjunction with the selected mind wan-

dering intervention described herein. Alternative approaches to the task design may 

prove fruitful in the further development of real-time measures of cognitive states 

using such low-cost systems. Lastly, results suggest that a ridge classifier is the most 

effective machine learning algorithm in terms of accuracy within the context of this 

specific paradigm. Future work can refine these results by either refining the probe-

caught paradigm or by focusing on a task-based baseline for creating machine learn-

ing classifiers that can be applied to the real-time detection of mind wandering states.  
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